US 2005/0132356 Al

[0084] In one implementation, as described above, the
contents of a device manifest file are derived from the pkd
and processed crf file (called a psf file 280 once processed)
information, as well as from the build manifest file (e.g., for
the file list and attribute information). The crf file describes
component-level dependencies, and is processed into a form
that describes package-level dependencies.

[0085] Further, component settings (configuration infor-
mation) can shadow one-another (in other words, there is a
precedence ordering in events where two related settings
exist on the system such that only one will win). Depen-
dency and shadowing information at the component level
are converted into package-level relations by way of a
shadow order tool.

[0086] The shadow order tool produces a package shadow
file (packagename.psf) for each package which shadows
other packages according to the component relationships file
226 (FIG. 2). The .psf file for a package lists (one per line)
the GUIDs of shadowed packages. The shadow order tool’s
inputs are the merged component to package mapping file
(.cpm), the merged component relationships file (.crf) and
the merged package definition file (.pkd). The output is a text
file, including formatted text lines of the form:

[0087] <shadowed pkg GUID>, <shadowed pkg
name>, <rule> (where rule=SHADOWS or
DEPENDSON).

[0088] An example line is shown below:

[0089] 273cedbf-ddef-4771-b2ce-6fe2fa2b2666,
SMARTFON, SHADOWS

[0090] From this information, the package generator cre-
ates a device manifest file, as shown in FIG. 2 by a Device
Manifest File Creation Process 262 and as generally
described in FIGS. 10A and 10B. To this end, each GUID
in the .psf file is added to the device manifest file, as
generally represented via step 1010 of FIG. 10A. Note that
in one implemetation, this includes determining if the GUID
is a dependency GUID or a shadow GUID, and calling the
appropriate add function on the device manifest object.
When the GUIDS have been added, the device manifest
object writes the device manifest file to the temporary
directory, as generally represented via step 1030 of FIG.
10B.

[0091] As described in FIG. 11, the package file 232 is
created, including the processed files described in the direc-
tive file, the rgu file(s) 214, the xml file(s) 218, and the
device manifest file 260, along with other package contents
282, using a package file creation process such as a CAB file
API (CABAPI). The CABAPI is intended to provide access
to the contents of Cabinet files that are used as the transport
mechanism for the files involved in an image update as part
of the image update process.

[0092] To create the package, a PackageDefinition class is
responsible for managing the overall creation of a Package.
As part of the creation process, the PackageDefinition object
creates a new subdirectory under the directory specified by
the ‘ FLATRELEASEDIR’ environment variable. The
directory name is the package name, with the string
“ PACKAGE_FILES” appended thereto, ¢.g., given a pack-
age named—“LANG”—, a directory named “LANG-
_PACKAGE_FILES” would be created. This directory is

Jun. 16, 2005

created when the method SetDirectoryBase is called on the
object. When the PackageDefinition object creates a pack-
age, the name of the resulting package file is the friendly
name of the package with a “.PKG” extension. The package
file conforms to the Microsoft CAB file specification for
CAB version 1.3.

[0093] The PackagDefinition class provides the following
public methods:

[0094] PackageDefinition(XipPackage pkg)—Con-
structor to create a package based on an XipPackage
object.

[0095] SetDirectoryBase(string path)—Creates a
new subdirectory under the specified directory.

[0096] Validate()—Determines if the package has the
two required fields, a name and a GUID.

[0097] ReadManifesto—Causes the BuildManifest
associated with this package to parse the appropriate
build manifest file.

[0098] MakePackage()—Creates the actual package
file for this package definition.

[0099] Further, when working with the various files for
inclusion in the packages, it should be noted that executable
code and data may be arranged in separate files. One
significant advantage of is to facilitate a multi-language
system, where the language-specific parts of a feature are
placed into separate packages that are language specific.
This creates a system where the packages that contain the
executable code of the system are separate from the pack-
ages that contain language-specific components of the sys-
tem. As a result, a patch for the executable code of a feature
may be applied to any device, independent of any combi-
nation of languages that are installed on a that device.

[0100] More particularly, by construction, when a feature
is built, the executable code (and language-independent
data) are separated into one set of files, and the language-
dependent data (and potentially code) into another set of
files. These files are tagged as being part of the feature, but
the language-dependent data files are further tagged being as
language dependent. The system then moves those files into
a separate package (e.g., described by a LocBuddy tag in the
pkd file).

[0101] By way of example, a telephone-based feature may
be in a library (e.g., tpeutil.dll) that is language-independent.
The language-dependent resources for the phone feature are
built into another resource dll, e.g., named tapres.dll, which
is further localized for each language, e.g., it becomes
tapres.dll.0409.mui (for US English), tapres.dll.0407.mui
(for German), and so forth. These files are tagged as being
part of the phone feature, but the language-specific files are
further tagged as being language-specific, with suitable
filenames. For example, filenames may be constructed by
substituting suitable language tags into a location-based
variable in the name, such as represented by
tapres.dll. 2L OCID%.mui. Then the file is processed for
each language that is supported, and multiple LANG-
PHONE (the locbuddy) packages are generated, e.g.,
LANGPHONE__ 0409 (for US English), LANGPHONE__
0407 (for German), and so forth. As a result, the system can
later update the LANGPHONE region such as to fix bugs in



